304am永利集团_永利集团304am官方入口


  • 免费服务热线
  • 400-065-6886
  • 电话:86(0)512-6295 9990
  • 传真:86(0)512-6295 9995
新闻中心

excel不熟练怎么办,R来帮您(一)数据分类汇总

发稿时间:2020-06-19来源:天昊生物





天昊生信团自4月份以来,陆续推出一系列的R基础教程,很多老师也展开R的学习。目前收到部分老师反馈如何对一组数据进行列求和。之所以提出这个问题,是因为excel数据中样品是无规则排列,即使行排序也不能将同一组的样品靠在一起;或者样品数量较多,分组较多,需要多次输入求和函数。这里,我们提供了一个R的统计教程,帮您解决这方面的问题。

读取数据

1.读取绝对丰度数据

In [1]:

df <- read.table('genus.taxon.Abundance.xls',header = T, row.names = 1, sep = 't',check.names = FALSE,quote = '',fill = T)
head(df,10)
Out[1]:
C-1  C-2  C-3  C-4  C-5  C-6  C-7  M-1  M-2  M-3  ...  M-5  M-6  M-7  M-8  Abundance  superkingdom  phylum  class  order  family
No_Rank  32729  43885  36532  29335  21815  26879  41869  31030  29862  33787  ...  43164  30980  21853  21792  471140  -  -  -  -  -
Lactobacillus  24438  24449  3760  18204  28795  4537  12831  24450  17354  26211  ...  30850  19648  21548  18263  291188  Bacteria  Firmicutes  Bacilli  Lactobacillales  Lactobacillaceae
Unassigned  25317  21725  13405  19347  14697  16676  19162  15819  22083  21072  ...  12032  7750  33000  26360  279560  Bacteria  Bacteroidetes  Bacteroidia  Bacteroidales  Porphyromonadaceae
Alistipes  5720  6196  18812  14525  19759  21996  10696  4411  5670  3663  ...  5744  6580  5415  5571  146280  Bacteria  Bacteroidetes  Bacteroidia  Bacteroidales  Rikenellaceae
Parabacteroides  6092  2683  8164  10246  10619  8742  7885  4493  12209  2423  ...  5628  4943  6382  11633  118324  Bacteria  Bacteroidetes  Bacteroidia  Bacteroidales  Porphyromonadaceae
Bacteroides  9803  3257  7719  5919  8039  6959  3502  6514  8694  3840  ...  7839  4368  11986  15711  116935  Bacteria  Bacteroidetes  Bacteroidia  Bacteroidales  Bacteroidaceae
Barnesiella  2982  1414  2341  9184  3707  6875  3812  3183  2773  5250  ...  3128  6584  3764  6680  64267  Bacteria  Bacteroidetes  Bacteroidia  Bacteroidales  Porphyromonadaceae
Eisenbergiella  680  2283  4357  1743  1251  6988  3731  1832  2204  1598  ...  1193  649  3466  4671  45890  Bacteria  Firmicutes  Clostridia  Clostridiales  Lachnospiraceae
Oscillibacter  653  714  4704  1569  2210  4680  4303  2748  4912  800  ...  2424  729  1287  2486  37738  Bacteria  Firmicutes  Clostridia  Clostridiales  Ruminococcaceae
Turicibacter  1373  2366  20  1405  56  6  2091  5060  9  9229  ...  1  1  4360  1693  27673  Bacteria  Firmicutes  Erysipelotrichia  Erysipelotrichales  Erysipelotrichaceae

2.读取分组数据


In [2]:

info = read.table('sample_groups.xls',header = F,col.names = c('sample','group'))head(info)
Out[2]:
sample  group
C-1  Control
C-2  Control
C-3  Control
C-4  Control
C-5  Control
C-6  Control

3.检查样品是否正确


In [3]:

info$sample
Out[3]:
C-1 C-2 C-3 C-4 C-5 C-6 C-7 M-1 M-2 M-3 M-4 M-5 M-6 M-7 M-8

4.根据分组文件,从丰度数据中提取样品的丰度信息


In [4]:

df = df[as.character(info$sample)]head(df)
Out[4]:
C-1  C-2  C-3  C-4  C-5  C-6  C-7  M-1  M-2  M-3  M-4  M-5  M-6  M-7  M-8
No_Rank  32729  43885  36532  29335  21815  26879  41869  31030  29862  33787  25628  43164  30980  21853  21792
Lactobacillus  24438  24449  3760  18204  28795  4537  12831  24450  17354  26211  15850  30850  19648  21548  18263
Unassigned  25317  21725  13405  19347  14697  16676  19162  15819  22083  21072  11115  12032  7750  33000  26360
Alistipes  5720  6196  18812  14525  19759  21996  10696  4411  5670  3663  11522  5744  6580  5415  5571
Parabacteroides  6092  2683  8164  10246  10619  8742  7885  4493  12209  2423  16182  5628  4943  6382  11633
Bacteroides  9803  3257  7719  5919  8039  6959  3502  6514  8694  3840  12785  7839  4368  11986  15711

5.检查分组信息


In [5]:

info$group
Out[5]:
Control Control Control Control Control Control Control NNK-BaP NNK-BaP NNK-BaP NNK-BaP NNK-BaP NNK-BaP NNK-BaP NNK-BaP
分组信息发现,仅有2个分组,组名分别是Control、NNK-BaP


计算该组的丰度之和、均值、方差、标准差

查看Control组包含哪些样品

In [6]:

info[info$group=='Control',1]

Out[6]:

C-1 C-2 C-3 C-4 C-5 C-6 C-7


apply函数计算Control组的和、均值、方差、标准差

In [7]:

df['Control_sum']  = apply(df[as.character(info[info$group=='Control',1])],1,sum)
df['Control_mean']  = apply(df[as.character(info[info$group=='Control',1])],1,mean)
df['Control_var']  = apply(df[as.character(info[info$group=='Control',1])],1,var)
df['Control_sd']  = apply(df[as.character(info[info$group=='Control',1])],1,sd)
head(df)

Out[7]:

C-1  C-2  C-3  C-4  C-5  C-6  C-7  M-1  M-2  M-3  M-4  M-5  M-6  M-7  M-8  Control_sum  Control_mean  Control_var  Control_sd
No_Rank  32729  43885  36532  29335  21815  26879  41869  31030  29862  33787  25628  43164  30980  21853  21792  233044  33292.000  64182849  8011.420
Lactobacillus  24438  24449  3760  18204  28795  4537  12831  24450  17354  26211  15850  30850  19648  21548  18263  117014  16716.286  99804027  9990.197
Unassigned  25317  21725  13405  19347  14697  16676  19162  15819  22083  21072  11115  12032  7750  33000  26360  130329  18618.429  16946400  4116.601
Alistipes  5720  6196  18812  14525  19759  21996  10696  4411  5670  3663  11522  5744  6580  5415  5571  97704  13957.714  43482964  6594.161
Parabacteroides  6092  2683  8164  10246  10619  8742  7885  4493  12209  2423  16182  5628  4943  6382  11633  54431  7775.857  7342272  2709.663
Bacteroides  9803  3257  7719  5919  8039  6959  3502  6514  8694  3840  12785  7839  4368  11986  15711  45198  6456.857  5800759  2408.477

apply函数计算NNK-BaP组的和、均值、方差、标准差

In [8]:

df['NNK-BaP_sum']  = apply(df[as.character(info[info$group=='NNK-BaP',1])],1,sum)
df['NNK-BaP_mean']  = apply(df[as.character(info[info$group=='NNK-BaP',1])],1,mean)
df['NNK-BaP_var']  = apply(df[as.character(info[info$group=='NNK-BaP',1])],1,var)
df['NNK-BaP_sd']  = apply(df[as.character(info[info$group=='NNK-BaP',1])],1,sd)
head(df)

Out[8]:

C-1  C-2  C-3  C-4  C-5  C-6  C-7  M-1  M-2  M-3  ...  M-7  M-8  Control_sum  Control_mean  Control_var  Control_sd  NNK-BaP_sum  NNK-BaP_mean  NNK-BaP_var  NNK-BaP_sd
No_Rank  32729  43885  36532  29335  21815  26879  41869  31030  29862  33787  ...  21853  21792  233044  33292.000  64182849  8011.420  238096  29762.000  48868388  6990.593
Lactobacillus  24438  24449  3760  18204  28795  4537  12831  24450  17354  26211  ...  21548  18263  117014  16716.286  99804027  9990.197  174174  21771.750  25821419  5081.478
Unassigned  25317  21725  13405  19347  14697  16676  19162  15819  22083  21072  ...  33000  26360  130329  18618.429  16946400  4116.601  149231  18653.875  72916680  8539.126
Alistipes  5720  6196  18812  14525  19759  21996  10696  4411  5670  3663  ...  5415  5571  97704  13957.714  43482964  6594.161  48576  6072.000  5639229  2374.706
Parabacteroides  6092  2683  8164  10246  10619  8742  7885  4493  12209  2423  ...  6382  11633  54431  7775.857  7342272  2709.663  63893  7986.625  22692800  4763.696
Bacteroides  9803  3257  7719  5919  8039  6959  3502  6514  8694  3840  ...  11986  15711  45198  6456.857  5800759  2408.477  71737  8967.125  17710582  4208.394


按列计算相对丰度

In [9]:

df_Relative = apply(df,2,function(d) d/sum(d))
head(df_Relative)

Out[9]:

C-1  C-2  C-3  C-4  C-5  C-6  C-7  M-1  M-2  M-3  ...  M-7  M-8  Control_sum  Control_mean  Control_var  Control_sd  NNK-BaP_sum  NNK-BaP_mean  NNK-BaP_var  NNK-BaP_sd
No_Rank  0.13115102  0.17585513  0.14639033  0.11755065  0.08741665  0.10770901  0.16777666  0.12434282  0.11966244  0.135390620  ...  0.08756892  0.08732449  0.13340707  0.13340707  0.24318010  0.14420668  0.11926172  0.11926172  0.19457417  0.10579967
Lactobacillus  0.09792749  0.09797157  0.01506700  0.07294672  0.11538677  0.01818058  0.05141614  0.09797557  0.06954062  0.105032218  ...  0.08634673  0.07318314  0.06698518  0.06698518  0.37814391  0.17982493  0.08724334  0.08724334  0.10281045  0.07690602
Unassigned  0.10144980  0.08705600  0.05371626  0.07752693  0.05889354  0.06682375  0.07678560  0.06338959  0.08849058  0.084439315  ...  0.13223697  0.10562929  0.07460741  0.07460741  0.06420761  0.07409938  0.07474945  0.07474945  0.29032475  0.12923607
Alistipes  0.02292107  0.02482849  0.07538309  0.05820430  0.07917789  0.08814195  0.04286081  0.01767567  0.02272072  0.014678304  ...  0.02169888  0.02232400  0.05593109  0.05593109  0.16475105  0.11869583  0.02433160  0.02433160  0.02245313  0.03594017
Parabacteroides  0.02441175  0.01075127  0.03271462  0.04105758  0.04255225  0.03503078  0.03159662  0.01800426  0.04892367  0.009709399  ...  0.02557383  0.04661554  0.03115927  0.03115927  0.02781887  0.04877431  0.03200385  0.03200385  0.09035356  0.07209653
Bacteroides  0.03928239  0.01305139  0.03093143  0.02371850  0.03221373  0.02788597  0.01403315  0.02610278  0.03483843  0.015387575  ...  0.04803007  0.06295682  0.02587379  0.02587379  0.02197829  0.04335292  0.03593289  0.03593289  0.07051638  0.06369227


写入文件进行保存

In [10]:

write.csv(df_Relative,'genus.taxon.RelativeAbundance.cvs')


往期相关链接:

1、R基础篇

如何使用Rstudio练习R基础教程

R相关软件及R包安装

【零基础学绘图】之绘制venn图(五)

【零基础学绘图】之绘制barplot柱状图图(四)

【零基础学绘图】之绘制heatmap图(三)

【零基础学绘图】之绘制PCA图(二)

【零基础学绘图】之alpha指数箱体图绘制(一)

2、R进阶

【绘图进阶】之交互式可删减分组和显示样品名的PCA 图(三)

【绘图进阶】之绘制PCA biplot图(二)

【进阶篇绘图】之带P值的箱体图、小提琴图绘制(一)

3、数据提交

3分钟学会微生物多样性云平台数据分析;

3分钟学会CHIP-seq类实验测序数据可视化 —IGV的使用手册

10分钟搞定多样性数据提交,最快半天内获取登录号,史上最全的多样性原始数据提交教程

20分钟搞定GEO上传,史上最简单、最详细的GEO数据上传攻略

4、表达谱分析

如何对GEO数据进行差异分析

5、医学数据分析

【WGS服务升级】人工智能软件SpliceAI助力解读罕见和未确诊疾病中的非编码突变

隐性疾病trio家系别忽视单亲二倍体现象——天昊数据分析助力临床疾病诊断新添UPD(单亲二倍体)可视化分析工具

【昊工具】Oh My God! 太好用了吧!疾病或表型的关键基因查询数据库,我不允许你不知道Phenolyzer

如果您对本文案介绍的方法或代码有疑问,

请扫码添加QQ群沟通

【本群将为大家提供】

分享生信分析方案

提供数据素材及分析软件支持

定期开展生信分析线上讲座

QQ号:1040471849

Copyright © 2012-2023 304am永利集团    All Rights Reserved    苏ICP备17064027号-1
Baidu
sogou